

La flore intestinale

 En 2017: près de 4000 publications concernant le "gut microbiota"

SII et microbiote: une histoire ancienne...

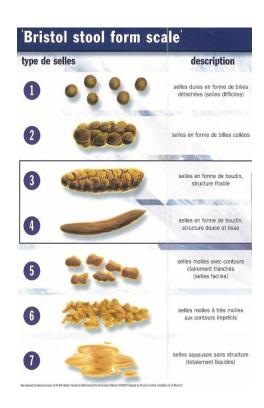
- SII post gastroentérite infectieuse (risque x4)
 Klem F. Gastroenterology 2017
- Exacerbation des symptômes après prise d'antibiotiques

Maxwell Am J Gastroenterol 2002

Pullulation bactérienne du grêle prévalence de 4 à 78%!!

> Pimentel Am J Gastro 2000 Ghoshal Gut Liver 2017

Quelles sont les questions?

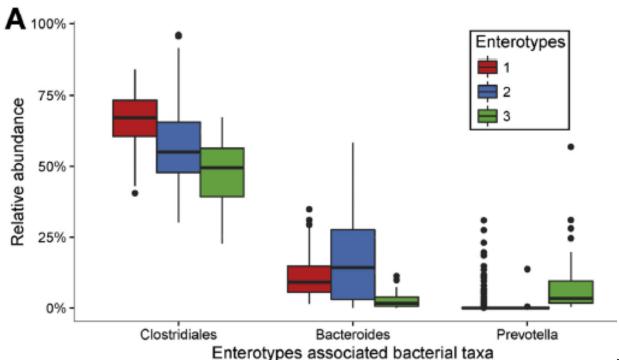

En quoi le microbiote est-il différent en cas de SII ?

• Quel est le rôle de la dysbiose dans la physiopathologie du SII?

• Quelles conséquences thérapeutiques ?

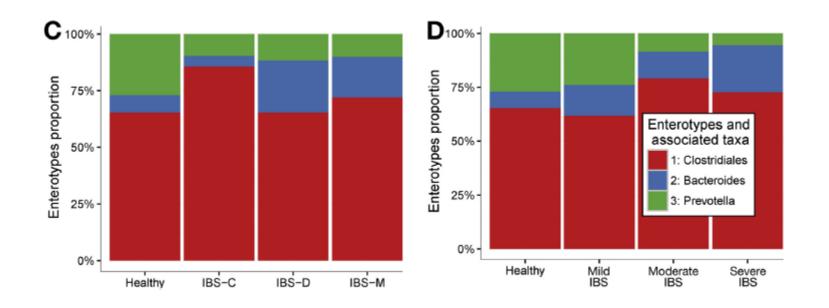
SII et microbiote: pas si simple à étudier...

- Pas un mais des SII:
 - Troubles du transit
 - Sévérité
 - Post-infectieux
 - Post-stress
 - Alimentation, médicaments, autres...
- Pas une mais des flores:
 - Flore fécale
 - Flore adhérente à la muqueuse colique +++
 - Flore dans l'intestin grêle



SII et microbiote: pas si simple à étudier...

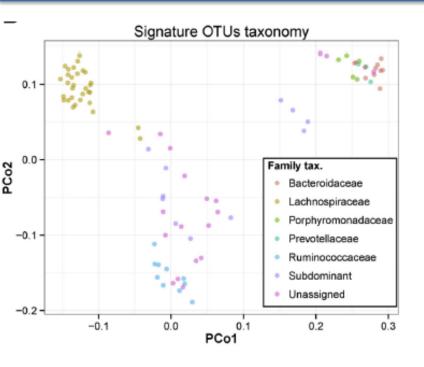
- Pas une mais des techniques pour analyser la flore:
 - Approches moléculaires (sans culture):
 - Quelles bactéries (ARN16S)?
 - Quels gènes (métagénomic)?
 - Quelle fonction ? (meta-transcriptomique, -protéomiques, bonomiques, -bolomiques)
 - Culture (diversité microbienne, approche fonctionnelle) Mais 70% des bactéries non cultivables par méthodes classiques
- Nombre « important » de patients nécessaires
 €€€


Le microbiote du SII en 2017

- Cohorte exploratoire:110 SII vs 39 sujets sains
- Cohorte de validation: 29 SII vs 17 sujets sains
- Analyse (ARN 16S): selles et biopsies de muqueuse colique
- PCR bactéries produisant du CH4 (selles)
 + test respiratoire H2 + CH4 le matin à jeun

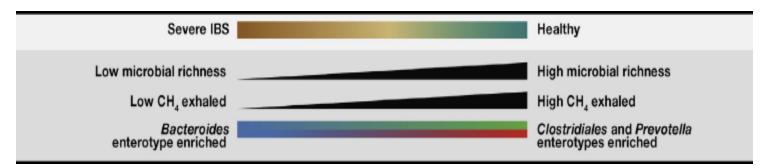
Tap, Gastroenterology 2017

Répartition des entérotypes et SII


Influence du transit

Influence de la sévérité

Sujets sains: plus souvent Prevotella

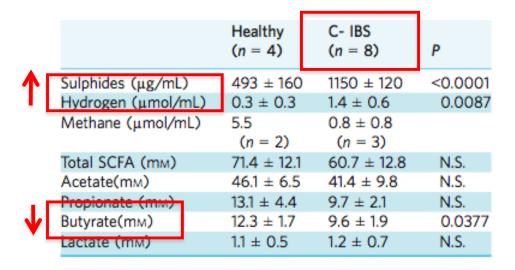

SII: plus souvent Bacteroides

Une signature microbienne associée avec la sévérité du SII

Sévérité du SII associée

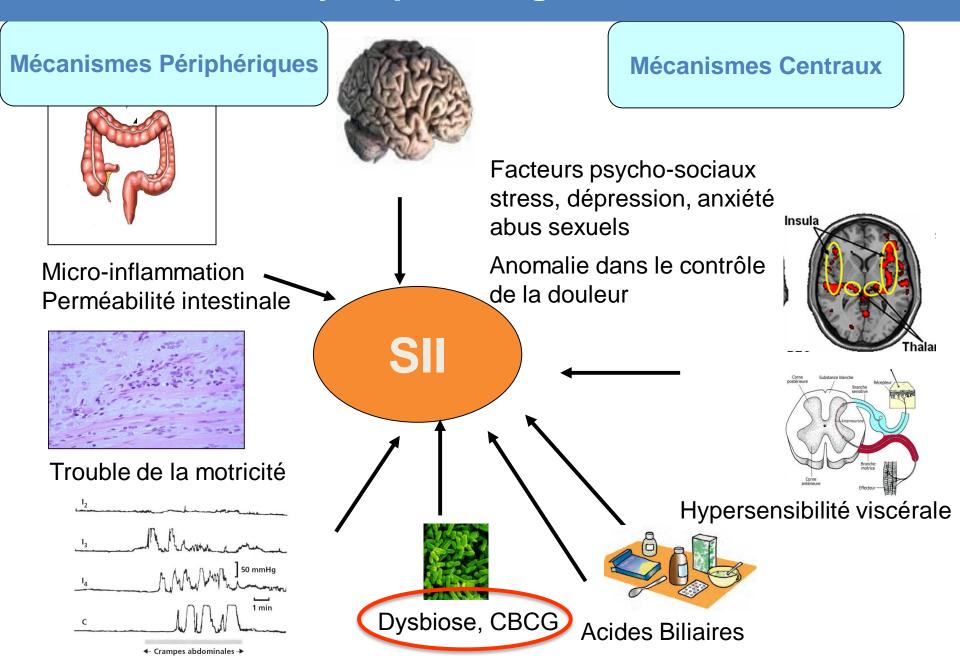
- positivement à une signature microbienne
- À une moindre diversité microbienne,
- À une moindre production de méthane,
- À une flore moins riche en Clostridia/Prevotella
- Indépendant de l'alimentation/médicaments

Tap, Gastroenterology 2017



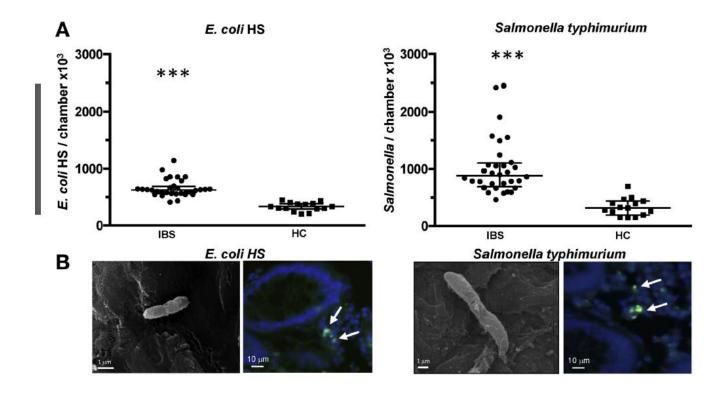
Microbiote et fonctions métaboliques

Approche fonctionnelle


Log ₁₀ N/g faeces	Healthy subjects $(n = 12)$	C-IBS subjects (n = 14)	P
Total strict anaerobes	11.3 ± 0.3	11.4 ± 0.4	N.S.
Total facultative anaerobes	8.5 ± 0.9	8.6 ± 0.8	N.S.
Lactic acid producing bacteria Bifidobacteria	7.8 ± 0.5	6.8 ± 0.7	<0.0001
Lactobacilli	6.9 ± 0.7	5.5 ± 0.9	0.0007
Lactate utilising bacteria			
Lactate-utilising bacteria	9.3 ± 0.4	7.9 ± 1.2	0.0046
Suphate-reducing bacteria	5.9 ± 0.4	8.4 ± 0.3	0.0002

Capacité de fermentation in vitro de la flore fécale

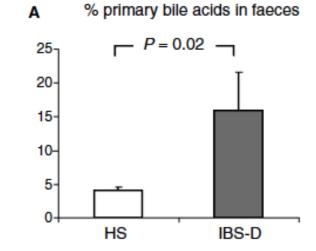
Chassard C Aliment Pharmacol Ther 2012

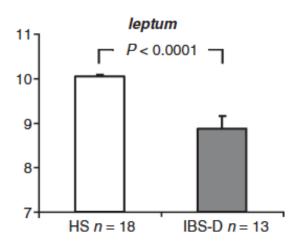

Physiopathologie du SII

Microbiote et perméabilité intestinale

Biopsies coliques 32 femmes SII vs 15 contrôles Chambre de Ussing

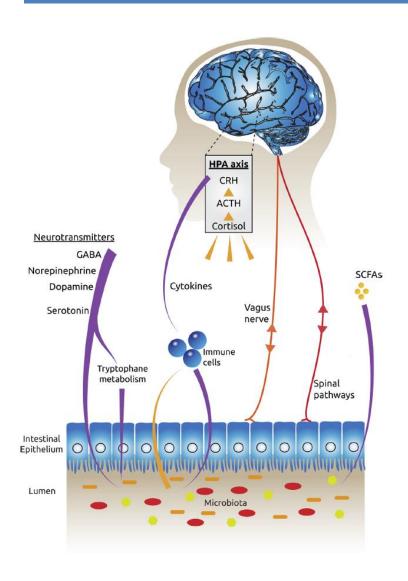
Etude par fluorescence du passage de bactéries à travers la muqueuse E Coli (commensal) et S. thyphimurium (pathogène)




Microbiote et acides biliaires

- Acides biliaires:
 - transformés par la flore colique: primaires -> secondaires
 - laxatifs endogènes (motricité, perméabilité muqueuse, sécrétions)
 - Rôle dans la sensibilité viscérale
- impliqués dans la pathogénie du SII-D
 - Malabsorption des AB en cas de diarrhée chronique (30-50%)
- → Influence de la dysbiose sur le métabolisme des AB?

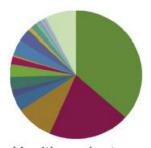
Acides biliaires fécaux et SII-D


- 14 SII-D vs 18 VS
- Analyse de selles
 - AB: HPLC spectrométrie de masse
 - Microbiote (RT q-PCR)
- Corrélation % AB primaires
 - Avec Score de Bristol
 - Avec nombre de selles

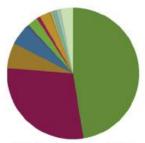
→ Anomalies du métabolisme des acides biliaires en cas de SII Lien avec symptômes
Duboc H, Neurogastroenterol Motil 2012

Microbiote et fonctions neuro-psychologiques

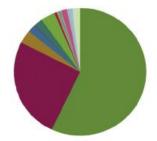
Microbiote et :
Développement du SNC
Mémoire
Compréhension
Sociabilité
Autisme
Maladies neuro liées à l'âge



SII et mycobiote


39 SII (19 HS, 20 NS)
 vs 18 contrôles

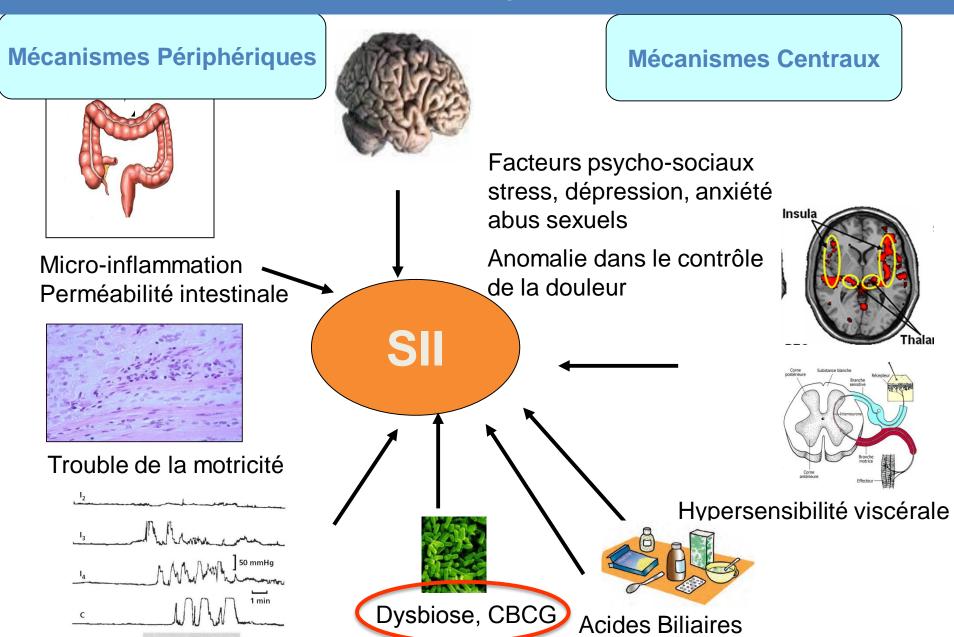
Dysbiose du mycobiote en cas de SII différente selon la sensibilité viscérale


- Saccharomyces cerevisiae
- Candida albicans
- Aspergillus section Nidulantes
- Debaryomyces prosopidis
- Wallemia muriae
- Torulaspora delbrueckii
- Penicllium section Chrysogena
- Rhodotorula mucilaginosa
- Candida parapsilosis
- Suillus luteus
- Phoma spp.
- Rhodosporidiobolus colostri
- Alternaria alternata
- Alternaria metachromatica
- Verticillium leptobactrum
- Candida humilis
- Hyphodontia pallidula
- Sporobolomyces roseus
- Aspergillus section Aspergillus
- Candida dubliniensis
- unclassified
- Acremonium spp.
- Davidiella tassiana
- Meyerozyma guilliermondii
- Aspergillus section Nidulantes
- Cladosporium clodosporioides compl
- unclassified
- Cyberlindnera c.f. jadinii
- Monographella nivalis
- Wickerhamomyces onychis
- other

Healthy volunteer

IBS hypersensitive

IBS normally sensitive

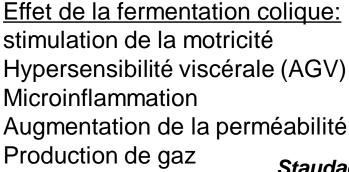

Mycobiote et hypersensibilité viscérale

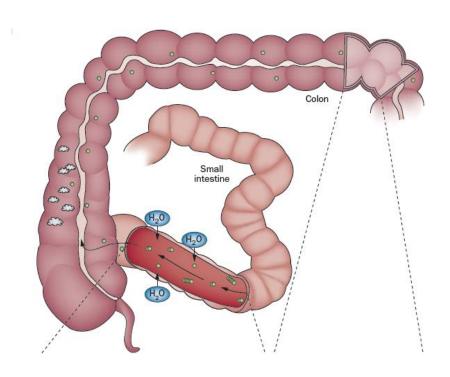
- Modèle de stress chez le rat:
 - hypersensibilité viscérale
 - Dysbiose du mycobiote

- Fungicide → normo-sensible
- Transplantation fécale de rats stressés non traités par fungicide → hypersensilibité viscérale
- → Rôle du mycobiote dans l'hypersensibilité viscérale

Rôle de la dysbiose?

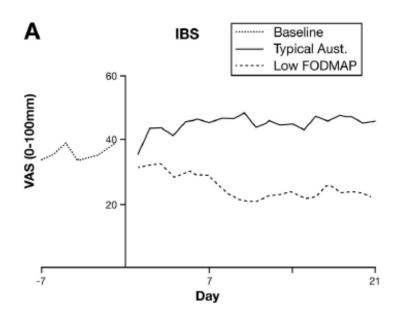
← Crampes abdominales →

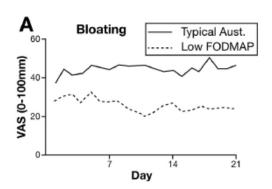

Quelles conséquences thérapeutiques de la dysbiose?

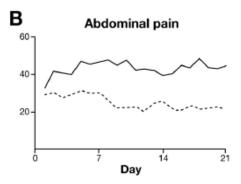

- Régime pauvre en FODMAPs
- Rifaximine
- Probiotiques
- Transplantation fécale

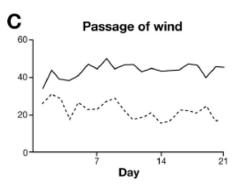
« FODMAPs »

Fermentable, Oligosaccharides, Disaccharides, Monosaccharides and Polyols

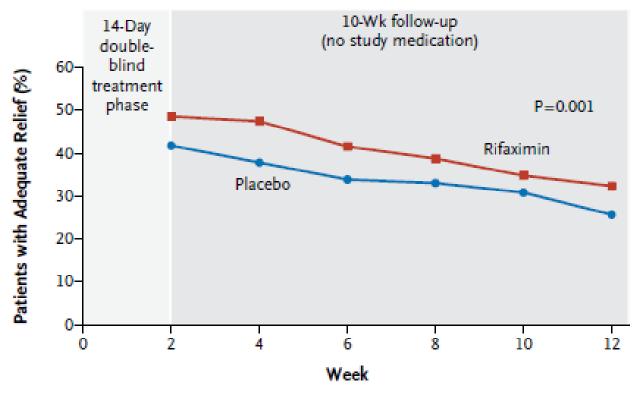



Staudacher et al. Nature Review Gastroenterol Hepatol2014


Efficacité du régime pauvre en FODMAPs


30 SII vs 8 VS 21 j de régime

Halmos, Gastroenterology 2014



Rifaximin: antibiotique non absorbable et SII non C 2 études phase III (Target 1 et 2) n = 1260 SII

550 mgx3/j (14 j) vs placebo

score global (40.7% vs. 31.7%, P<0.001) à S4 ballonnements (40.2% vs. 30.3%, P<0.001) à S4

Pimentel et al. New Engl J Med 2011 Lembo et al. Gastroenterology 2016

Transplantation fécale et SII

Table 1 List of articles included in the review examining the treatment of irritable bowel syndrome with fecal microbiota transplantation

Ref.	Year	Туре	n	N in regard to IBS	Subcategory		
					IBS-D	IBS-C	IBS-M
Borody et al ^[35]	1989	Letter to the editor	55	Not specified	-	-	-
Andrews et al ^[34]	1992	Case report	1	1	-	1	-
Borody et al ^[27]	2004	Review	6	3	-	3	-
Pinn et al ^[28]	2013	Conference abstract	13	13	9	3	1
Holvoet et al ^[29]	2015	Conference abstract	12	12	-	-	-
Cruz Aguilar et al ^[30]	2015	Conference abstract	9	9	5	4	0
Hong et al ^[31]	2016	Conference abstract	10	10	-	-	-
Syzenko et al ^[32]	2016	Conference abstract	12	12	6	5	1
Mazzawi et al ^[33]	2016	Conference abstract	9	9	-	-	-

- Amélioration chez 58% des participants
- 8 études RCT en cours (15/3-2017)
- → manque de données

Conclusions

- En cas de SII, il peut exister une dysbiose différente selon
 - Le trouble du transit
 - La sévérité des symptômes
- Cette dysbiose concerne
 - La flore fécale et la flore muqueuse
 - Le microbiote bactérien et le mycobiote
- Avec des conséquences sur la production de métabolites et de gaz
- Elle est susceptible d'intervenir dans les différents mécanismes physiopathologiques du SII
- Il n'existe pas actuellement de données suffisantes pour proposer une transplantation fécale aux patients souffrant de SII

SECSII

- Suivi Epidémiologique et des Coûts du SII
- Cohorte nationale française sur un an sur 500 patients
- En ligne

